

Total Freedom 2.0
Plug-In Developer’s Guide

Disclaimer
Honeywell International Inc. (“HII”) reserves the right to make changes in specifications
and other information contained in this document without prior notice, and the reader
should in all cases consult HII to determine whether any such changes have been made.
The information in this publication does not represent a commitment on the part of HII.

HII shall not be liable for technical or editorial errors or omissions contained herein; nor
for incidental or consequential damages resulting from the furnishing, performance, or
use of this material.

This document contains proprietary information that is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced, or translated
into another language without the prior written consent of HII.

 2011-2012 Honeywell International Inc. All rights reserved.

ARM is a trademark of ARM Limited.

IBM is a registered trademark of IBM in the United States.

Windows is either a registered trademark or trademark of Microsoft Corporation in the
United States and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Other product names or marks mentioned in this document may be trademarks or
registered trademarks of other companies and are the property of their respective
owners.

Web Address: www.honeywellaidc.com

http://www.honeywellaidc.com

 i

Table of Contents
Contents and Development Environment ... 1

Package Contents ... 1
System Requirements ... 1
Plug-in Development Environment ... 1

Installing ARM ELF Toolchain for Linux PC .. 1
Installing ARM ELF Toolchain for Cygwin .. 2

Plug-in Development ... 3
Header Files .. 3
Plug-in Chain ... 4

Build Bin Files for Every Plug-in ... 4
Create a Plug-in Chain Configuration File .. 4
Create MOCF File that Contains Multiple Plug-ins ... 5

Define Plug-in Information ... 5
Declare Plug-in .. 5
Export Symbols for Other Plug-ins ... 6
Define Plug-in Entry Function and Exit Function .. 6
Makefile ... 7
Build Plug-in... 9
Plug-in Configuration File ... 9
Configurations of System Routines .. 13
Memory and Storage for Plug-ins .. 14

File Size of Plug-in ... 14
Stack Size .. 14
Global Variables ... 15
Heap .. 15

Create an MOCF file with Plug-ins ... 15
Create an MOCF File that Contains a Single File ... 15
Create an MOCF File that Contains Multiple Files 15
Add Custom Defaults File to Plug-in MOCF file .. 16

Download Plug-in and Configuration File ... 16
Configuration File Samples .. 17

FormatPlugin_1 and FormatPlugin_2 ... 17
Call the System Routine ... 18
Disable Calling the System Routine ... 18
System Routine at End of Plug-In Sequence ... 19

Generate Menu Bar Codes for Plug-ins ... 21
Normal ... 21
Lock-Mode ... 21

Format Plug-In APIs .. 23
DataEdit ... 23
ProcessingBarcode .. 25
CheckLicense .. 25
Register APIs ... 26
Control the Scanner’s Beeper and LED ... 27

Control GPIO of the Scanner ... 28
Decode Plug-in APIs ... 31

ii

Logic of Calling Decode Plug-ins ... 31
Decode Plug-in APIs .. 31

Decode .. 31
ProcessingBarcode .. 31
CheckLicense .. 32
CheckVersion ... 32
Register APIs ... 33

Control GPIO of the Scanner ... 34
System Calls for Decode Plug-ins .. 34

Diagnostics .. 37
Boot Mode to Disable Loading Plug-in ... 37
View Plug-in Configuration ... 37
Load Status of Plug-ins .. 38
Plug-in Relevant Menu Settings ... 39

Technical Assistance .. 41

1

Contents and Development Environment

Package Contents

• ARM™ ELF Toolchain for Cygwin
The ARM ELF cross-compiling toolchain installation package for an IBM®-
compatible Windows® PC.

Note: You must install the Cygwin software before using this cross-compiling
toolchain.

• ARM ELF Toolchain for Linux PC
The ARM ELF cross-compiling toolchain package for an IBM-compatible Linux®
PC.

• Plug-in Samples
Folder containing sample plug-in development projects. The Sample folder is
created when you install the toolchain.

Before downloading a plug-in to the scanner, you must first compile the plug-in on
an IBM-compatible Linux PC using the ARM ELF Toolchain for Linux PC or on a
Windows PC with installed Cygwin software using the ARM ELF Toolchain for
Cygwin.

• EZConfig-Scanning
Used to download and debug.

System Requirements

TotalFreedom GNU Tooolchain is supported under the following system requirements:
• Processor: Minimum 1GHz:
• Memory: Minimum 512 MB RAM
• Hard Drives: Minimum 300 MB free disk space
• Operating system: Windows XP, Fedora 11, Fedora 12, Red Hat 9
• Software dependencies: GNU Make 3.81 or later

The Toolchain has not been tested on other operating systems besides those mentioned
above. Support for 64-bit operating systems is not available.

Plug-in Development Environment

Installing ARM ELF Toolchain for Linux PC

1. Log into an IBM-compatible Linux PC as the root user.

2. Copy the tarball file PluginToolbin_Linux.tar.bz2 in the package.

3. Untar the PluginToolbin_Linux.tar.bz2 file:

2

mkdir /opt/ArmTools

cd /opt/ArmTools/

tar -xvf PluginToolbin_Linux.tar.bz2

4. Log out as root, then add the path to the Toolchain executables as follows:
export PATH=$PATH:/opt/ArmTools/PluginToolbin/arm-matrix-eabi/bin

Note: You must set the environmental variable PATH to point to the Toolchain
executables for every software developer intending to compile a plug-in for Matrix.

Installing ARM ELF Toolchain for Cygwin

Before installing the Toolchain for Cygwin, you must install the Cygwin package for
Microsoft Windows from http://www.cygwin.com.

Note: You must explicitly select some of the packages such as “make” and “gcc” during
the installation setup. We recommend that you install Cygwin completely.

For additional help about installing and setting up Cygwin, please refer to

http://cygwin.com/cygwin-ug-net/setup-net.html

1. Install Cygwin (usually in the directory C:\cygwin).

2. Execute Cygwin.

3. Copy the tarball file PluginToolbin_Cygwin.tar.bz2 in the package and then un-tar it:
mkdir –p /cygdrive/c/MatrixTools/ArmTools

cd /cygdrive/c/MatrixTools/ArmTools

tar -xvf PluginToolbin_Cygwin.tar.bz2

Caution: The command above installs the package at the default location
C:|\MatrixTools\ArmTools\. If you change the installation path, remember to adjust the
given samples as needed.

http://www.cygwin.com/
http://cygwin.com/cygwin-ug-net/setup-net.html

3

Plug-in Development

The plug-in is actually a relocatable ELF file. Total Freedom plug-ins are different than a
normal program running on a common operating system such as Windows and Linux.

The plug-in has no main function but does have an initial function instead of the main
entry function.

The following function plug-in types can be defined: decode plug-ins and format plug-ins.
Another special kind of helper plug-in provides functions that can be called by other kinds
of plug-ins. You can divide a plug-in into a functional plug-in and helper plug-in(s), which
allows the sharing and changing of plug-in code and data in a modular fashion (see
Declare Plug-in on page 5).

The installation package contains both a format plug-in sample and a helper plug-in
sample.

Header Files

Use standard C library functions to develop plug-ins. To use the standard C library
functions, include the standard C Library header files as you would when developing a
standalone program. You also need Honeywell-defined header files to properly create
plug-ins.

The following header files must be included:
#include <hsm_plugin/matrix_plugin.h>

The matrix_plugin.h header file contains the basic defines and data structures of the plug-
in. All plug-ins must include this header file.

#include <hsm_plugin/matrix_format_plugin.h>

The format plug-in header file contains relevant defines, data structures and API
declarations. You must include this header file when creating a format plug-in.

#include <hsm_plugin/matrix_beep_led.h>

This file contains the beeper and LED control system call defines and declarations.
#include <hsm_plugin/matrix_bar codeid.h>

This header file contains Honeywell Symbology ID definitions. You must include this
header file in plug-ins that work with the symbology IDs in the processed result of the
scanner.

#include <hsm_plugin/matrix_decode_plugin.h>

This header file contains the decode plug-in definitions, data structures and API
declarations.

Note: These header files are built into the toolchain. Include them as follows:
 #include <hsm_plugin/HEADER_FILE.h>

4

Plug-in Chain

Honeywell scanners provide a chain function that allows you to compact multiple plug-ins
into a plug-in chain MOCF file. The data can be handled by this plug-in chain. The
output data from the previous plug-in is passed to the next plug-in as the input data. The
system routine should be a special plug-in and enabled by default. Call plug-ins and the
system routine in the order of their appearance in the XML configuration file.

Build Bin Files for Every Plug-in

Build every plug-in used for the plug-in chain. The “*.plugin” files generated are used to
create a plug-in chain MOC file.

Create a Plug-in Chain Configuration File

The configuration file determines whether the bar code data should be sent to plug-in
routines or a system routine, and the order of the data. If there is no system routine
configuration entry in the XML file, by default the scanner will call the system routine after
all plug-ins have been called.

The following is an example of Plug-in Chain configuration file:
<?xml version="1.0"?>

<Format_PlugIn>

 < FormatPlugIn_1>

 <! Configurations for FormatPlugin_1!>

 ……

<entrydatastate> MODIFIED </entrydatastate>

<chainonexit> CHAINALWAYS </chainonexit>

……

</ FormatPlugIn_1>

<SystemRoutine>

 <entrydatastate> MODIFIED </entrydatastate>

<chainonexit> CHAINIFSUCCESS </chainonexit>

</SystemRoutine>

< FormatPlugIn_2>

 <! Configurations for FormatPlugin_2!>

 ……

<entrydatastate> ORIGINAL </entrydatastate>

<chainonexit> CHAINALWAYS </chainonexit>

</ FormatPlugIn_2>

 5

……

</Format_PlugIn>

In this configuration, first call FormatPlugin_1. Then, if FormatPlugin_1 parsed the input
data successfully, the system routine is called and the output data from FormatPlugin_1 is
passed to the system routine as input. If FormatPlugin_1 failed to parse the data, the
system routine won’t be called. After the system routine is treated, FormatPlugin_2 is
treated according to its settings (whether it is called, what kind of input data should be
passed, etc.). All the plug-ins are treated by calling the logic component in the firmware
in the order of their appearance in the XML file.

Create MOCF File that Contains Multiple Plug-ins

To create a plug-in chain MOCF file with multiple “*.plugin” files, create a MOCF file with
one of the files first and then use the AppendToMocf tool to add plug-in files to the MOCF
file.
AppendToMocf -m $(OutputFile) -t CompatProd -f $(CompatProdRecFile) -d

AppendToMocf -m $(OutputFile) -t user -f FormatPlugIn_1.plugin

AppendToMocf -m $(OutputFile) -t user -f FormatPlugIn_2.plugin

AppendToMocf -m $(OutputFile) -t user -f ChainConf

AppendToMocf -m $(OutputFile) -t CustomDefaults -f
ChainCustomDefaults.txt

Define Plug-in Information

Certain information must be built into the plug-in for it to load it properly. Define this
information in the same source file with the plug-in declaration (see Plug-in Chain on page
4):

#define PLUGIN_NAME SamplePlugin

#define COMPANY_NAME Plug-In Developer, Inc.

#define MAJOR_VERSION 5

#define MONOR_VERSION 3

#define BUILD_NUMBER 37

#define CERTIFICATE 102148

#define CERTIFICATE_TIME 2010/02/02 15:00:05

#define PLUGIN_GUID abcd1234

#define FILE_NAME Sample.plugin

Note that the value of the definition should be ASCII character strings without double
quotes. Spaces and commas are permitted in the string.

Declare Plug-in

The macro ‘DECLARE_PLUGIN(init_plugin, cleanup_plugin, plugin_type, MenuID)’
(defined in “matrix_plugin.h”) is used to declare the plug-in so the scanner can obtain
information from the plug-in when it is loaded:

DECLARE_PLUGIN(init_plugin, cleanup_plugin, HON_PLUGIN_FORMAT, 0x01);

6

The init_plugin and cleanup_plugin correspond to the addresses of the plug-in initial
function and plug-in cleanup function respectively (see Decode Plug-in APIs on page 31).

The plug-in class type is defined as:
enum HONPluginClassType

{

 HON_PLUGIN_TYPE_UNKNOWN = 0,

 HON_PLUGIN_FORMAT,

 HON_PLUGIN_DECODE

};

MenuID is the identifier that scanners use to identify different plug-ins when they pass
menu bar codes to plug-ins (see ProcessingBarcode on page 25).

Export Symbols for Other Plug-ins

You can reference symbols that are defined in other functions. This helps you divide
plug-ins into parts so that you can upgrade specific parts of the plug-in while keeping the
rest of the plug-in unchanged.

To export a symbol to other plug-ins, use the macro ‘EXPORT_SYMBOL(symbol)’:
int HelloWorld(void)

{

 printf("Hello World Symbol\r\n");

 return 0;

}

EXPORT_SYMBOL(HelloWorld);

Note: You must define the plug-in that exports symbols for other plug-ins to call before
defining any other plug-ins that will call the exported symbols in the plug-in configuration
file. Otherwise, the loading of plug-ins will fail.

Define Plug-in Entry Function and Exit Function

Since the plug-in is not an executable program binary, it does not have “main” function.
Instead, it contains an entry function and an exit function. The entry function is called
when the plug-in is loaded to the initial plug-in and register plug-in APIs. You may need
the exit function to clean up the plug-in contents when removing it.

Define your plug-in entry and exit functions by using the following prototypes:
int init_plugin(HONPluginRawInfo *plugin);

void cleanup_plugin(void);

The definitions of the entry function and exit function in HelloWorld.c are:
int init_plugin(HONPluginRawInfo *plugin)

{

 7

/* This is a Hello World plug-in sample and you can add what you want
here */

 printf("/******************************/\r\n");

 printf(" Hello World Plug-in \r\n");

 printf("/******************************/\r\n");

 return 0;

}

void cleanup_plugin(void)

{

 return; // Do nothing

}

The entry function registers plug-in APIs (see Register API on page 26).

Makefile

The sample plug-in projects provide a frame structure of the Makefile for creating your
own plug-in(s). You can easily generate a Makefile by modifying the sample Makefile.
The Makefile template is updated to support generating the MOCF file.

#Environment variables, Needed to modify to “PREFIX =
/opt/ArmTools/PluginToolbin” if #use tool chain for Linux PC

PREFIX = /cygdrive/c/MatrixTools/ArmTools/PluginToolbin

CFLAGS = -mcpu=arm926ej-s -Wall -Wundef -fomit-frame-pointer -mfloat-
abi=soft -mno-apcs-frame -Wstrict-prototypes -Wno-trigraphs -fno-
strict-aliasing -fno-common -I${PREFIX}/arm-matrix-eabi/include

LDFLAGS = -L${PREFIX}/arm-matrix-eabi/lib -L${PREFIX}/lib/gcc/arm-
matrix-eabi/4.3.2

CC = ${PREFIX}/bin/arm-matrix-eabi-gcc

LD = ${PREFIX}/bin/arm-matrix-eabi-ld

STRIP = ${PREFIX}/bin/arm-matrix-eabi-strip

APPENDMOC = ${PREFIX}/Tools/AppendToMocf

COMPATPODFILE = ${PREFIX}/Tools/AppCompatProd.txt

User defined fields

Modify 'BINNAME' to define the name of the plug-in output

Modify 'OBJS' to define list of object file names

8

BINNAME = Helper

OBJS = helper_plugin_sample.o

Tatgets

all: moc

.PHONY: moc

moc:$(BINNAME).moc

$(BINNAME).moc: $(BINNAME).plugin $(BINNAME)Conf

 $(APPENDMOC) -m $@ -t CompatProd -f $(COMPATPODFILE) -d

 $(APPENDMOC) -m $@ -t user -f $(BINNAME).plugin

 $(APPENDMOC) -m $@ -t user -f $(BINNAME)Conf

 @echo ' ***** Modified your $(BINNAME)Conf and try "make moc"
again *****'

$(OBJS): %.o: %.c

$(BINNAME).plugin: $(OBJS)

 $(LD) -marmelf -r $(LDFLAGS) -o foo.bin $(OBJS) -lc -lmatrix -lgcc

 $(STRIP) -g -o $@ foo.bin

 rm -rf foo.bin

clean:

 -rm -f *.o *~ $(BINNAME).plugin *.moc

You can use the Makefile template to build a MOCF file of a single plug-in along with a
configuration file. To put multiple plug-ins in one MOCF file, use the tool “AppendToMocf”
and the product-compatible file “AppCompatProd.txt”, located in the Tools folder where
the toolkits were installed. Put the plug-ins that you want to add to the MOCF file and the
plug-in configuration file in the same folder and use following commands:

$(ToolKitsInstallDir)/Tools/AppendToMocf -m Plugin.moc -t CompatProd -
f ${ ToolKitsInstallDir }/Tools/AppCompatProd.txt -d

$(ToolKitsInstallDir)/Tools/AppendToMocf -m Plugin.moc -t user -f
a.plugin

$(ToolKitsInstallDir)/Tools/AppendToMocf -m Plugin.moc -t user -f
b.plugin

$(ToolKitsInstallDir)/Tools/AppendToMocf -m Plugin.moc -t user -f
c.plugin

 9

……

$(ToolKitsInstallDir)/Tools/AppendToMocf -m Plugin.moc -t user -f
PluginConf

In this example, “Plugin.moc” is the MOCF file that contains all plug-ins and a
configuration file. The files “a.plugin”, “b.plugin” and “…plugin” are plug-ins you want to
put in the MOCF file. “PluginConf” is the plug-in configuration file.

Build Plug-in

To build a plug-in, go to source directory for the plug-in and type:
make

To clean the project and remove all earlier compiled objects, go to the source directory
and type:

make clean

In a new build environment, the plug-in configuration file must be in the same folder with
the source code and must be named “$(BINNAME)Conf” so that Makefile can invoke
tools to generate a MOCF file containing plug-in and configuration files. You can modify
your configuration file and type “make moc” to generate a new MOCF file without re-
compiling the plug-in:

make moc

Plug-in Configuration File

The plug-in configuration file helps plug-ins load properly. A plug-in configuration file
controls the operation of each plug-in class. You must assign a single configuration file to
a plug-in class for the system to execute plug-ins in that class.

The configuration file format conforms to XML version 1.0. The parser on the device will
parse the format as described below and will not necessarily be fully XML compliant.
Note that inserting comments is optional. When this configuration file is reported to the
host, the comments will remain. The items (not including comments) in the configuration
file are as follows, with each item defined in the order of appearance.
1) <?xml version="1.0"?>

2) One of the following must appear, depending on the plug-in class. Each file must
contain only one plug-in class configuration: <Decode_PlugIn> or <Format_PlugIn>.

a) Each plug-in within a class requires a unique identifier. Immediately following this
identifier are all the definitions associated with that particular plug-in. The
identifier does not need to match plug-in file names or the name you assigned the
plug-in. This identifier is used solely for reference within this document, both to
demarcate all definitions associated with the plug-in and to allow plug-in definitions
within this file to reference one another, such as for passing control from one plug-
in to another. When you create this file, ensure that all plug-in identifiers are
unique. The plug-in identifier must appear in the form <plug-in identifier>, using a
unique identifier as described above.

10

Note: If two or more plug-ins are defined with the same tag name, the scanner
will load the one that is defined first in the configuration file and ignore the other(s)
without reporting an error.

i. You can include the name you assigned to the plug-in within the configuration
file. The name is overridden by any value obtained from the plug-in when it is
loaded. This name is always output in reports to the host. The format is as
follows:

<name>

Plug-in name string

</name>

ii. You can include the company name of the plug-in within the configuration file.
It is overridden by any value obtained from the plug-in when it is loaded. This
company name is always output in reports to the host. The format is as
follows:

<companyname>

Company name string

</companyname >

iii. You can also include the license status of the plug-in within the configuration
file. License status is reported with a value of YES or NO. This field is ignored
as an input in the configuration file, as the plug-in itself is responsible for
determining license status. This license status is always output in reports to
the host. The format is as follows:

<licensed>

YES or NO

</licensed>

iv. The following definition determines whether or not the plug-in is to be used. It
contains a value of YES or NO. If not specified, the default value is YES. You
can use NO in those instances when a plug-in resides on the bar code reader
for future or alternate use but is not to be used in the present configuration.
The format is as follows:

<active>

YES or NO

</active>

Note: To deactivate a plug-in, set the field of “active” in the configuration file
to “NO”. The inactive plug-ins are not loaded. There is no error beep to
indicate that the inactive plug-ins were ignored.

v. The plug-in major revision string, which you assign, can be included in the
configuration file. It is overridden by any value obtained from the plug-in when
it is loaded. The major revision string is always output in reports to the host.
The format is as follows:

<majorrevision>

Major revision string

 11

</majorrevision>

vi. The plug-in minor revision string that you assign can also be included in the
configuration file. It is overridden by any value obtained from the plug-in when
it is loaded. The minor revision string is always output in reports to the host.
The format is as follows:

<minorrevision>

Minor revision string

</minorrevision>

vii. The plug-in build number string that you assign can be included in the
configuration file. It is overridden by any value obtained from the plug-in when
it is loaded. The build number string is always output in reports to the host.
The format is as follows:

<build>

Build number string

</build>

viii. The plug-in certificate number string supplied by Honeywell can be included in
the configuration file. It is overridden by any value obtained from the plug-in
when it is loaded. The certificate number string is always output in reports to
the host. The format is as follows:

<certificate>

Certificate number string

</certificate>

ix. The plug-in certificate time stamp string supplied by Honeywell can be
included in the configuration file. The format of the string is “YYYY/MM/DD
HH:MM:SS”. The string is overridden by any value obtained from the plug-in
when it is loaded. The certificate time stamp string is always output in reports
to the host. The format is as follows:

<certificatetime>

Certificate time stamp string

</certificatetime>

x. The GUID string supplied by Honeywell can be included in the configuration
file. It is overridden by any value obtained from the plug-in when it is loaded.
The GUID string is always output in reports to the host. The format is as
follows:

<guid>

Certificate number string

</guid>

xi. The following value defines the name of the plug-in binary file. This field is
mandatory. The format is as follows:

<filename>

File name string

</filename>

12

Note: The PlugInFileName must be only the file name without any path.

xii. The following optional field defines whether the plug-in’s main processing
function (including the main process function since it will treated as a special
plug-in) should receive original data (ORIGINAL), or data as it was modified by
the last plug-in in the plug-in chain (MODIFIED). If not specified, the default is
ORIGINAL. The format is as follows:

<entrydatastate>

ORIGINAL or MODIFIED (BOTH)

</entrydatastate>

xiii. The following optional field defines how to chain the plug-in based on the exit
criteria from this plug-in’s main processing function. Parameter values are as
follows:

CHAINALWAYS - always chain to the next plug-in, regardless of exit
criteria.

CHAINIFSUCCESS - chain only if the plug-in exit state indicates success.

CHAINIFFAILURE - chain only if the plug-in exit state indicates failure.

CHAINNEVER – don’t chain at all, regardless of the plug-in exit state.

If not specified, the default is CHAINALWAYS. The format is as follows:
<chainonexit>

CHAINALWAYS or CHAINIFSUCCESS or CHAINIFFAILURE or CHAINNEVER

</chainonexit>

b) A matching terminator for each plug-in identifier must follow all the definitions for
that plug-in. The plug-in terminator must appear in the form </plug-in identifier>,
where the plug-in identifier is the same used at the start of the plug-in definition.

3) One of the following must appear, depending on the plug-in class: </Decode_PlugIn>
or </Format_PlugIn>.

The following is a sample format plug-in configuration file, assuming the following
criteria:

• Configuration file name = FormatPlugIn_conf.

• Menu setting PLGFON is set to "FormatPlugIn_conf".

• Identifier = SampleFormatPlugIn_1

• Developer assigned name = SampleFormatPlugIn

• Developer assigned company name = Plug-In Developer, Inc.

• Major revision = 5

• Minor revision = 3

• Build number = 37

• Certificate number = 102148 dated 2009/08/10 15:00:05

• No GUID defined

 13

• Binary file name = FormatPlugIn.bin

• This plug-in takes modified data, rather than original data, as its input.

• Chain to the next plug-in if this plug-in fails:
<?xml version="1.0"?>

< ! --- Should be Format_Plugin since currently we only support format
plug-ins --- !>

<Format_PlugIn>

 < ! --- Plug-in ID name. Should conforms to plug-in filename
currently --- !>

 < SampleFormatPlugIn_1>

 <name> SampleFormatPlugIn </name>

 <company> Plug-In Developer, Inc. </company>

 <licensed> YES </licensed>

 <active> YES </active>

 <majorrevision> 5 </majorrevision>

 <minorrevision> 3 </minorrevision>

 <build> 37 </build>

 <certificate> 102148 </certificate>

 <certificatetime> 2009/08/10 15:00:05 </certificatetime>

 <guid></guid>

 <filename> FormatPlugIn.bin </filename>

 <entrydatastate> MODIFIED </entrydatastate>

 <chainonexit> CHAINIFFAILURE </chainonexit>

 </ SampleFormatPlugIn_1>

</Format_PlugIn>

Configurations of System Routines

Each class of plug-ins has routines to provide functions. The scanner also has routines
that provide functions, called system routines. System routines are enabled and called
after all plug-in routines have been called.

You can disable/enable system routines by editing the plug-in configuration file. To do so,
add a special plug-in entry in the XML configuration file. The entry name MUST be
“SystemRoutine”. There are two sub-entries available in this entry: “entrydatastate” and
“chainonexit”.

Configuration files without any explicit system routine definitions are also supported. If
there is no system routine configuration entry in the XML file, by default the scanner will
call the system routine after all plug-ins have been called.

If you do not want the system routine to parse the input data, set the tag “chainonexit” to
CHAINNEVER, which means the system routine is not called in the calling sequence.

14

If there is no system routine configuration in the configuration file, the default settings are
used. The default settings for system routine are “entrydatastate” – MODIFIED and
“chainonexit” – CHAINALWAYS. Then, regardless of whether or not the plug-in parsed
the decode result data, the system routine is always called and will receive the output
data from the plug-in and treat the received data as input.

The following is an example of disable/enable system routines:
<?xml version="1.0"?>

<Format_PlugIn>

<SystemRoutine>

 <entrydatastate> MODIFIED </entrydatastate>

<chainonexit> CHAINALWAYS/ </chainonexit>

</SystemRoutine>

 < FormatPlugIn_1>

 <! Configurations for FormatPlugin_1!>

 ……

</ FormatPlugIn_1>

< FormatPlugIn_2>

 <! Configurations for FormatPlugin_2!>

 ……

</ FormatPlugIn_2>

……

</Format_PlugIn>

 Memory and Storage for Plug-ins

File Size of Plug-in

The file size of plug-ins is limited to 2 MB. If the total size of your plug-ins and all the files
they generate during runtime reaches 2 MB, you cannot download any more plug-ins to
the scanner.

The size of a single plug-in is limited to 2 MB. If you try to download a plug-in larger than
2 MB, the download will fail. In addition, if the plug-in debug setting is turned on (by
sending menu command “PLGDBG1.” to the scanner), you will receive download failure
information from the scanner.

Stack Size

The size of stack for plug-ins is limited to 200K bytes. Therefore, you cannot define local
variables larger than 200K bytes

 15

Global Variables

If any global variable is not initialized in the plug-in, the memory for the global variable is
allocated dynamically during loading time. The size for global variables in your plug-in is
limited to 1 MB. Therefore, do not define global variables with initialization larger than 1
MB.

Heap

The heap size for plug-ins is 1 MB. Standard library functions such as malloc, free, calloc
and realloc are supported. If you try to allocate memory larger than 1 MB, the memory
allocate functions (malloc, calloc and realloc) will fail.

 Create an MOCF file with Plug-ins

Convert or merge the plug-ins and plug-in configuration files to the “MOCF” file container
before downloading the plug-in to a scanner. A scanner will not accept a binary plug-in
file. Use the “AppendToMocf” tool to create an MOCF file. This tool is located in the
folder $PluginDevToolInstallDir/Tools. In the same folder there are two compatible
product record files (AppCompatProd.txt and AppCompatProdRF.txt), which you can use
to generate MOCF files for corded and cordless scanners.

Note: There are examples for creating an MOCF file in the Makefile of the sample code.
You can use the example Makefile in the sample code of the toolchain as reference to
create your own Makefile.

Create an MOCF File that Contains a Single File

To create an MOCF file that only contains one file, use the shell commands:
AppendToMocf –m $(OutputFile) –t CompatProd –f $(CompatProdRecFile) -d

AppendToMocf –m $(OutputFile) –t user –f $(PluginFile)

Note: Create the MOCF file name $(OutputFile). $(CompatProdRecFile) is the
compatible product record file name. If you want the plug-in to be applied to corded
scanners, set $(CompatProdRecFile) to AppCompatProd.txt, otherwise, use
AppCompatProdRF.txt. $(PluginFile) is the plug-in binary file or plug-in configuration file
that you must add to the MOCF.

Create an MOCF File that Contains Multiple Files

You can create an MOCF file with multiple files. Once an MOCF file is created, use the
AppendToMocf tool to add more files to the MOCF file.

AppendToMocf –m $(OutputFile) –t CompatProd –f $(CompatProdRecFile) -d

AppendToMocf –m $(OutputFile) –t user –f $(PluginFile1)

AppendToMocf –m $(OutputFile) –t user –f $(PluginFile2)

AppendToMocf –m $(OutputFile) –t user –f $(PluginFile3)

……

AppendToMocf –m $(OutputFile) –t user –f $(PluginFilen)

16

Add Custom Defaults File to Plug-in MOCF file

Custom defaults files can be downloaded to a scanner for special uses. To add a custom
defaults file to an MOCF file, use the following shell command:

AppendToMocf –m $(OutputFile) –t CustomDefaults –f $(DefaultsFile)

Download Plug-in and Configuration File

You can download the plug-in and configuration file to a scanner using EasyConfig
software. Connect the scanner to EZConfig-Scanning. Click on the Download selection.
Under Firmware Download, use the … button to browse to the MOCF file name. Click
on Download to Device.

You may also use the Scan Data selection to send the command “PLGDIR” to verify that
your files have saved to the scanner correctly.

17

Configuration File Samples

FormatPlugin_1 and FormatPlugin_2

In the following configuration, FormatPlugin_1 is called and then, if FormatPlugin_1
parsed the input data successfully, the system routine is called and the output data from
FormatPlugin_1 is passed to the system routine as input. If FormatPlugin_1 failed to
parse the data, the system routine is not called. After system routine is treated,
FormatPlugin_2 is treated according to its settings (to be called or not, what kind of input
data should be passed, etc.). All the plug-ins are treated by the calling logic component
in the firmware in the order of their appearance in the XML file.

<?xml version="1.0"?>

<Format_PlugIn>

 < FormatPlugIn_1>

 <! Configurations for FormatPlugin_1!>

 ……

</ FormatPlugIn_1>

<SystemRoutine>

 <entrydatastate> MODIFIED </entrydatastate>

<chainonexit> CHAINIFSUCCEED </chainonexit>

</SystemRoutine>

< FormatPlugIn_2>

 <! Configurations for FormatPlugin_2!>

 ……

</ FormatPlugIn_2>

< FormatPlugIn_3>

 <! Configurations for FormatPlugin_3!>

 ……

</ FormatPlugIn_3>

</Format_PlugIn>

18

Call the System Routine

In the next example, the system routine is called whether or not FormatPlugIn_1 parsed
the input data. The system routine will always use the original data as input (the data
which was not treated by FormatPlugIn_1).

<?xml version="1.0"?>

<Format_PlugIn>

 < FormatPlugIn_1>

 <! Configurations for FormatPlugin_1!>

 ……

</ FormatPlugIn_1>

<SystemRoutine>

 <entrydatastate> ORIGINAL </entrydatastate>

<chainonexit> CHAINALWAYS </chainonexit>

</SystemRoutine>

< FormatPlugIn_2>

 <! Configurations for FormatPlugin_2!>

 ……

</ FormatPlugIn_2>

< FormatPlugIn_3>

 <! Configurations for FormatPlugin_3!>

 ……

</ FormatPlugIn_3>

</Format_PlugIn>

Disable Calling the System Routine

In the next example, the system routine is not called at all. This case disables calling the
system routine.

<?xml version="1.0"?>

<Format_PlugIn>

 < FormatPlugIn_1>

 <! Configurations for FormatPlugin_1!>

 ……

</ FormatPlugIn_1>

<SystemRoutine>

 19

 <entrydatastate> MODIFIED </entrydatastate>

<chainonexit> CHAINNEVER </chainonexit>

</SystemRoutine>

< FormatPlugIn_2>

 <! Configurations for FormatPlugin_2!>

 ……

</ FormatPlugIn_2>

< FormatPlugIn_3>

 <! Configurations for FormatPlugin_3!>

 ……

</ FormatPlugIn_3>

</Format_PlugIn>

System Routine at End of Plug-In Sequence

In the example above, there is no system routine configuration entry in the XML file. So
the system routine is put at the end of the plug-in calling sequence. In other words, the
system routine is called by default after all the plug-ins have been processed, whether or
not the last plug-in parsed data, and will take the data parsed by all the plug-ins as input
data.

<?xml version="1.0"?>

<Format_PlugIn>

 < FormatPlugIn_1>

 <! Configurations for FormatPlugin_1!>

 ……

</ FormatPlugIn_1>

< FormatPlugIn_2>

 <! Configurations for FormatPlugin_2!>

 ……

</ FormatPlugIn_2>

< FormatPlugIn_3>

 <! Configurations for FormatPlugin_3!>

 ……

</ FormatPlugIn_3>

20

</Format_PlugIn>

21

Generate Menu Bar Codes for Plug-ins

Each plug-in has a unique ID assigned to it. The ID is used to generate a menu bar code
for the plug-in. Plug-in menu codes are generated using either a Normal, or a Lock-Mode
method.

Normal

Using the normal method, conform to the following format when you generate menu bar
codes:

990XYYYYYDATA

"990" is a fixed prefix for plug-ins, "X" stands for plug-in types (0 for decode, 2 for format),
"YYYYY" stands for a five-digit hexadecimal ID number, and DATA is the menu data that
is sent to the plug-in. The "990XYYYYY" prefix is stripped off before the menu code is
sent to the plug-in.

The programming bar code data can also be sent as a menu command to the scanner so
that the plug-in can be configured that way. This only applies to the Normal method.

Lock-Mode

Using the Lock-Mode method, you can scan an Enter bar code to lock the plug-in when
you want to configure the plug-in via menu bar codes.

The format of the enter code is:

990XEntYYYYY

"990" is a fixed prefix for plug-ins, "X" stands for plug-in types (0 for decode, 2 for format),
Ent indicates this is a lock-mode enter code, and "YYYYY" stands for a five-digit
hexadecimal ID number.

Only one plug-in can be locked at a time. Once the plug-in is locked, all menu codes
scanned are passed to the plug-in directly by calling the BarcodeProcessing API.
Scanning data codes will cause the device to issue an error when a plug-in is locked. To
exit the lock-mode, scan an Exit menu bar code.

If the scanner is in lock-mode, generate menu bar codes that conform to the format
990XDATA ("990" is a fixed prefix for the plug-in menu and "X" stands for plug-in types).
When one of these codes is scanned, the prefix 990X is stripped off and DATA is passed
to the locked plug-in if the locked plug-in is the type indicated by X.

The format of an Exit code is:

99Exit

There is an exception for scanning menu codes when the scanner is in lock-mode. If you
scanned a menu code conforming to the format of the specific menu codes used in the
normal way (990XYYYYYDATA), the scanner will strip off the "990XYYYYY" header and
then pass the "DATA" to the plug-in.

22

Note: The helper plug-ins do not provide any API to the device, and they do not need
any identifier. You must define the Macro "MenuID" to "-1", which is ignored.

23

Format Plug-In APIs

DataEdit

DataEdit is the main routine for formatting plug-ins. This API is called when the output
string must be formatted before being sent out.

Function prototype:
int /* Return zero on success, -1 if an error

occurred */

 (*DataEdit)(

DataEditParam *format_param); /* Input: Format parameters structure */

The parameter type “DataEditParam” is defined as:

typedef struct {

// Revision number

int RevisionNumber;

// Input and Output Data. Note that input data could be byte wide or
word wide. depends on the value of CharSize.

unsigned char *message;

// Number of Data Characters

int length;

//Character size (1 for byte, 2 for word)

int CharSize;

// Hand Held Products internal Code (Symbology) ID

char HHPcodeID;

// AIM/FACT/ISO "Symbology Identifier"

char AIMcodeLetter;

// ... and "Modifier" character

char AIMcodeModifier;

} DataEditParam;

Note: The “message” member field of structure DataEditParam contains the passed-in
data string. You must put the formatted data string back to “message” buffer. The length
of the formatted data string must not exceed the length of the original string by more than
500 bytes, otherwise it will cause an overflow.
The function returns -1 if an error occurred or formatting failed. If the format processing is
successful, the function returns zero to indicate success, and restores the processed
string to the “message” field in the input structure.

24

Below is an example of DataEdit API. This API of the plug-in simply adds the prefix
“Code128*” and applies it to all the Code 128 bar codes.

/** This API is called to perform a data format.

 * The plug-in developer should implement this

 * routine by himself and set address of this

 * function to the "DataEdit" field of the

 * "DataEditApi" structure.

 */

int MatrixPluginDataEdit(DataEditParam *pFormatParam)

{

 // Add your Format code here and copy the result back to
pFormatParam->message.

unsigned char *buffer = NULL;

unsigned short WidePrefix = {‘C’, ‘o’, ‘d’, ‘e’, ‘1’, ‘2’, ‘8’,
‘*’};

// if not Code 128, just return -1

if(pFormatParam->HHPcodeID != WA_CODELETTER_CODE128){

 return -1;

}else{

 printf("This is Code128\r\n");

}

buffer = malloc((pFormatParam->length + 100)*(pFormatParam-
>CharSize));

if(!buffer)

 return -1;

if(pFormatParam->CharSize == 1){

 memcpy(buffer, “Code128*”, 8);

 memcpy(buffer+8, pFormatParam->message, (pFormatParam-
>length)*(pFormatParam->CharSize));

 }else if(pFormatParam->CharSize == 2){

 memcpy(buffer, WidePrefix, 16);

 memcpy(buffer+16, pFormatParam->message, (pFormatParam-
>length)*(pFormatParam->CharSize));

 }

 // Set length after data format

 pFormatParam->length += 8;

 free(buffer);

 return 0;

}

 25

ProcessingBarcode

This function is used to process specific user-defined programming bar codes.

Function prototype:
int /* Return zero on success, -1 if an error

occurred */

 (*ProcessingBarcode)(

char *pMenuData, /* Input: Pointer of menu code data */

int DataLength); /* Input: Data length */

The function returns -1 if an error occurred or processing failed. If the programming bar
code is processed successfully, the function returns zero to indicate success.

CheckLicense

This function is used to validate the license of the plug-in.

Function prototype:
int /* Return zero on success, -1 if an error

occurred */

 (*CheckLicense)(

char *SN); /* Product serial number */

The product serial number is passed to the function as a null-terminated string of
characters. The function must return 0 if the license is valid or -1 if not.

Note: This function is called after the plug-in is loaded and initialized. Plug-ins should
keep the result of the CheckLicense function during the runtime of the plug-in, and should
use the result to determine if the other APIs (for example, ProcessingBarcode) can be
called or not (by returning 0 or -1 when the API is called).

Setting up a license check mechanism requires two parts: license check and license file
generation.

To generate a license file, create a data string from the serial number of the scanner
using your own encryption algorithm. You could make a programming bar code (the
programming bar code should conform to the plug-in programming bar code format
“990XYYYYYDATA”) based on this data string. Add code in the API
“ProcessingBarcode” so that after the license programming bar code is scanned, a
license file can be generated in the scanner. Typically in “ProcessingBarcode”, to support
licensing you must:

1. Distinguish a programming bar code for licensing.

2. Decrypt the passed in data of the programming bar code.

3. Extract the serial number from the Decrypt data and compare it with the serial number
of the scanner.

26

4. If the serial number from decrypted data is the same as the serial number of scanner,
create a license file in the scanner to contain the license information of the plug-in.

You can use a group ID method to implement your license check mechanism so that you
do not need to generate programming bar codes for every scanner. A group ID is the
identifier assigned to scanner groups, and it resides in the scanner. If the value of the
group ID is 0, then the scanner does not have a group ID. For scanners with the same
group ID, you can create a programming bar code to generate the license file. The
CheckLicense function may be called twice if the scanner has a group ID. The plug-in
must remember both the passed-in serial number and group ID during the runtime.

Register APIs

The register API function is called to register APIs of the plug-in so they can be called by
scanner applications. It returns zero for success and -1 for error.

Function prototype:
int /* Return zero on success, -1 if an error

occurred */

 register_apis(

void *Plugin, /* Plugin object */

void *APIS); /* API structure pointer */

The plug-in object structure type is defined as:
typedef struct{

char PluginRawName[PLUGIN_ID_LEN]; /* Raw name in plugin
binary */

enum HONPluginClassType PluginRawClassType; /* Raw Class Type in
plguin binary */

int (*PluginInitRoutine)(void *Info); /* Startup function. */

void (*PluginExitRoutine)(void); /* Destruction function.
*/

void *PluginApis; /* Plugin APIs. This
should be in this
structure in order that
the plugin could assign
APIs' address here */

int MenuIdentifier; /* This field is the
identifier assigned from
Hoenywell. Menu codes
with the identifier
prefix are passed to
* the corresponding plug-
in */

/* Other plugin infos */

char CompanyName[PLUGIN_STRING_LEN];

 27

char MajorVersionNumber[PLUGIN_STRING_LEN];

char MinorVersionNumber[PLUGIN_STRING_LEN];

char BuildNumber[PLUGIN_STRING_LEN];

char CertificateNumber[PLUGIN_STRING_LEN];

char CertificateTime[PLUGIN_STRING_LEN];

char GUID[PLUGIN_GUID_LEN];

char FileName[PLUGIN_STRING_LEN];

} HONPluginRawInfo;

The API structure type is defined as:
typedef struct

{

 // Revision Number. It is used for Plug-in API forward compablity

 int RevisionNumber;

 // Format API callback

 int (*DataEdit)(DataEditParam *pFormatParam);

 // Plug-in Menuing API callback

 int (*ProcessingBarcode)(char *pMenuData, int DataLength);

 // Check license API callback

 int (*CheckLicense)(char *SN);

 // Get version API callback

 int (*GetVersion)(VersionInfo *pInfo);

} DataEditApi;

Control the Scanner’s Beeper and LED

This function is a system call to control the scanner’s beeper and LED. Control of the
LED is bound with the beeper, and the plug-in can control the beeper and LED by calling
one system call:

Function prototype:
int /* return -1 for failure and return 0

for success */

beep_led_io(

unsigned int const* pBeepSeq, /* Input: the beeper/LED control
entry sequence */

unsigned int SeqLen); /* Input: length of the control
sequence */

The beeper/LED control entry sequence is an array of integers starting with an audible
LED sync (defined in "matrix_beep_led.h"). Three types of LEDs are defined: good read

28

flash, error flash, and no LED. The following integers stand for entries of the sequence.
The rules for the entries are:

• Each sequence should start with an audible LED sync (LED_DEFINE) and end
with a terminator (0x00).

• The odd entries of the sequence are duration in heartbeats; the even entries are
the frequency (0 is a rest).

• Frequency 100 or above is an audible sound (provided the beeper can create the
sound).

• Frequency 100 or above will use the LED specified at the first char of the
sequence.

• For each silent pause, use one of the LED defines as the frequency.

 Examples:

This sequence can be read as 10mS sound at 200Hz with no led, then 10mS
silence with no LED:
unsigned int ExampleSeq[] = {audible LED sync (LED_DEFINE),
duration of next freq (mS), audible freq (Hz), duration (mS),
silent freq (LED_DEFINE), end of string (0x00)};

unsigned int StandardClickSeq[] = {NO_LED, 10, 200, 10, NO_LED,
0x00};

The beeper duration has a resolution of 10ms.
unsigned int StandardBeepSeq[] ={LED Synchronized?,mS
(duration),frequency hz,end of string (0x00)};

 For reference, read the header file "matrix_beep_led.h"

Control GPIO of the Scanner

Function prototype:
void (*GPIO_Plugins)(void);

The GPIO_Plugins function is called from the scanner’s system idle thread. It allows you
to run code without an imaged-based event. How often this function gets called is
unspecified and will vary with scanner activity. Calls to this function will not occur if the
scanner is in a low power mode. This function can be used with the timer function to
provide minimum timing of GPIO toggles.

Available pins (for Xenon 1900/1902):

 29

int plugin_io_init(unsigned int pins, unsigned int direction);

The plugin_io_init function is used to take control of a GPIO pin for plug-in use. It
specifies the pin direction as an input or output. The function will save the system pin
configuration which can be restored when the pin control is returned. The function returns
0 when successful and -1 if unsuccessful. It has two bit field inputs that specify the pin
number and direction.

Examples:
plugin_io_init(0x40,0x40) will make GPIO Pin 6 an output.

plugin_io_init(0x140,0x040) will make GPIO Pin 6 an output and GPIO
pin 8 an input.

int plugin_io_read(void);

The plugin_io_read function reads the GPIO pins and returns a bit field containing the pin
status. A value of 1 specifies the signal is high at the processor input and a value of 0
specifies the signal is low at the processor input. Pins that are not under plug-in control
or pins that are outputs are set to zero.

Example:
Readvalue = plugin_io_read(); could return 0x100, which would
indicate GPIO pin 8 is high.

int plugin_io_write(unsigned int pins, unsigned int data);

The plugin_io_write function is used to write data to the output pins. Pins set as inputs
are not under plug-in control and will be ignored. A zero is returned when successful and
a -1 is returned if there is an error. Like the init function, two input bit fields are used to
specify the pins to write to and data to be written.

Examples:
plugin_io_write(0x40,0x40) will set GPIO Pin 6 high, other pins
will not be written too

30

plugin_io_write(0x40,0x0) will set GPIO Pin 6 low, other pins will
not be written too

plugin_io_write(0x140,0x040) will make GPIO Pin 6 high and GPIO pin
8 an low.

31

Decode Plug-in APIs

Logic of Calling Decode Plug-ins

The order of calling decode plug-ins is controlled by the configuration file but should also
conform to the scanner’s internal logic. The captured image is sent to the system decode
routine first to detect programming bar codes. If it is a programming bar code, the bar
code decode is processed directly and the image is not passed to any plug-ins. If the
image is not a programming bar code, plug-ins and the system decode routine is called to
decode the image according to the order in the configuration file.

Once the image is recognized and decoded, the decoding process is stopped. The plug-
ins configured to be invoked after the current plug-in are ignored even if they are
configured as CHAINALWAYS or CHAINIFSUCCEED. Therefore, you must determine
the order of calling plug-ins and define the proper configuration file to ensure the plug-ins
can be called. For instance, if there are two plug-ins in the plug-in chain and both of them
can recognize and decode the same type of bar codes, you must define the plug-in that
you want to use to decode that type of bar codes before defining the second plug-in.

Decode Plug-in APIs

Decode

This API, which is the main routine for a decode plug-in, is called to decode the image
captured by a scanner.

Function prototype:
int /* Return zero on success, -1 if an error

occurred */

 (*Decode)(

unsigned char *pBuffer, /* Input: Pointer to image buffer */

int width, /* Input: image width */

int height); /* Input: image height */

When the decode processing succeeds, the function returns zero. The function returns -1
if an error occurs or decode failed.

ProcessingBarcode

The usage of this function is the same as the format plug-in (see ProcessingBarcode on
page 25).

Function prototype:
int /* Return zero on success, -1 if an error

occurred */

32

 (*ProcessingBarcode)(

char *pMenuData, /* Input: Pointer of menu code data */

int DataLength); /* Input: Data length */

When the programming bar code is processed successfully, the function returns zero.
The function returns -1 if an error occurs or processing failed.

CheckLicense

The usage of this function is the same as the format plug-in. See also CheckLicense on
page 32.

Function prototype:
int /* Return zero on success, -1 if an error

occurred */

 (*CheckLicense)(

char *SN); /* Product serial number */

The product serial number is passed to the function as a null-terminated string of
characters. The function returns 0 if the license is valid or -1 if not.

CheckVersion

The usage of this function is the same as the format plug-in. See also CheckVersion on
page Error! Bookmark not defined..
Function prototype:
int /* Return zero on success, -1 if an error

occurred */

 (*CheckVersion)(

VersionInfo *Info); /* Plug-in version info structure */

The version information type “VersionInfo” is defined as:
typedef struct {

 int RevisionNumber; /* Revision number */

 char *GUID; /* GUID of the plug-in */

 char *PluginName; /* Plug-in name */

 char *CompanyName; /* Company name of the plug-in */

 int MajorVersion; /* Major version number */

 int MinorVersion; /* Minor version number */

 int BuildNumber; /* Build number of the plug-in version */

char *CertificateNumber; /* Certificate number of the plug-in
version */

char *CertificateTime; /* Certificate time (yyyy/mm/dd hh:mm:ss)
*/

} VersionInfo;

 33

The plug-in information is filled into the input parameter structure when the function
returns 0, which indicates that the information was obtained successfully. The function
returns -1 if an error occurs.

Register APIs

The register API function is a system call function for a plug-in to register its APIs. It
returns zero for success and -1 for error.

Function prototype:
int /* Return zero on success, -1 if an error

occurred */

 register_apis(

void *Plugin, /* Plugin object */

void *APIS); /* API structure pointer */

The plug-in object structure type is defined as:
typedef struct{

char PluginRawName[PLUGIN_ID_LEN]; /* Raw name in plugin
binary */

enum HONPluginClassType PluginRawClassType; /* Raw Class Type in
plguin binary */

int (*PluginInitRoutine)(void *Info); /* Startup function. */

void (*PluginExitRoutine)(void); /* Destruction function.
*/

void *PluginApis; /* Plugin APIs. This
should be in this
structure in order that
the plugin could assign
APIs' address here */

int MenuIdentifier; /* This field is the
identifier assigned from
Honeywell. Menu codes
with the identifier
prefix are passed to *
the corresponding plug-in
*/

/* Other plugin infos */

char CompanyName[PLUGIN_STRING_LEN];

char MajorVersionNumber[PLUGIN_STRING_LEN];

char MinorVersionNumber[PLUGIN_STRING_LEN];

char BuildNumber[PLUGIN_STRING_LEN];

char CertificateNumber[PLUGIN_STRING_LEN];

34

char CertificateTime[PLUGIN_STRING_LEN];

char GUID[PLUGIN_GUID_LEN];

char FileName[PLUGIN_STRING_LEN];

} HONPluginRawInfo;

The decode API structure type is defined as:
typedef struct

{

 /// Revision Number

 int RevisionNumber;

 /// Decode API callback

 int (*Decode)(unsigned char *pBuffer, int width, int height);

 /// Set Decoder Menu

 int (*SetDecoderMenu)(void *DecoderSetting);

 /// Plug-in Menuing API callback

 int (*ProcessingBarcode)(char *pMenuData, int DataLength);

 /// Check license API callback

 int (*CheckLicense)(char *SN);

 /// Get version API callback

 int (*GetVersion)(VersionInfo *pInfo);

void (*GPIO_Plugins)(void);

} DecodeApi;

Control GPIO of the Scanner

This is a system call to control some GPIO of the scanner. See also Control GPIO of the
Scanner on page 28.

Function prototype:
void (*GPIO_Plugins)(void);

System Calls for Decode Plug-ins

There are four system calls for decode plug-ins to call:

extern int decoder_maycontinue(void);

extern int decoder_processresult(void *result);

extern int decoder_mstimer(void);

extern int plugin_div64(unsigned long long *n, unsigned int divisor);

The decoder_maycontinue system call allows the plug-in to check if the decoding should
continue or stop. A plug-in should call this system call frequently to avoid a scanner
hanging up during a long period of decoding.

 35

int /* return 0 if the decoder may be stopped and
return 1 for if decoder may continue decoding */

decoder_maycontinue(void);

The decoder_processresult system call is called when the decode plug-in gets a decoded
result from the passed-in image.
int /* return 0 if the decoder may be stopped and

return 1 for if decoder may continue decoding */

decoder_processresult(

void *result); /* Input: the pointer to decoded result */

DecodeResult is filled up by the plug-in with a decoded result, and the pointer to this
structure is passed to the decoder_processresult system call as void* parameter. You
must construct this structure before calling decoder_processresult and destruct this
structure after decoder_processresult is called . (See header file
“hsm_plugin/matrix_decode_plugin.h” for more information.)
typedef struct {

unsigned char *message; // Output Data String

int length; // Number of Data Characters

char menuFlag; // Boolean: is this for Menuing
Purposes

char mustStop; // Boolean: signals UnStructured
Append result

char lastRecord; // Boolean: is this the final "Result"
from the current decode?

char HHPcodeID; // Hand Held Products internal Code
(Symbology) ID

char AIMcodeLetter; // AIM/FACT/ISO "Symbology Identifier"

char AIMcodeModifier; // ... and "Modifier" character

DecodeType_t DecodeType;

IQImgInfo_t IQImgInfo;

} DecodeResult;

The decoder_mstimer system call provides a 1 ms granularity clock for use by decoder
plug-ins. The returned ticks are rolled back when it reaches the value of 0xFFFFFFFF.
int /* return ticks of current system timer */

decoder_mstimer (void);

This system call provides the functionality of 64-bit division. The result is stored in the
dividend and returns the remainder.
int /* return the remainder of the

division */

36

plugin_div64 (

unsigned long long *n, /* Input: pointer to 64 bits dividend
*/

unsigned int divisor); /* Input: 32 bits divisor */

37

Diagnostics

Boot Mode to Disable Loading Plug-in

If the scanner interface becomes locked due to corrupt plug-ins, you may boot the
scanner without loading plug-ins. The following steps force the scanner to boot in boot
mode:

1. Run EZConfig-Scanning and use Configure-Communications to set the Baud Rate
to 115200, and Word Format to N 8 1.

2. From the menu, select Device-Force Reader to Boot Mode.

3. Power the scanner and press any key.

4. From the Application Explorer pane, select Scan Data.

5. From the menu, select View-Serial Command Window. Enter 232 in the text box of
the Command Center window and click the Send Non Menu Command button.

6. The scanner loads the application without loading plug-ins.

In this mode, you can scan programming bar codes or send menu commands to disable
the plug-in. After power-cycling the scanner, the new configuration files or modified plug-
ins can be downloaded.

View Plug-in Configuration

The menu command “PLGINF” is used to show the plug-in configurations and load status
of plug-ins. Send menu command “PLGINF” in the Serial Command Window in
EZConfig-Scanning. A sample of the output is shown:

Plugin Configurations:

[Format Plugin Configuration]

 <HelloWorld.plugin>

 [name]: HelloWorld

 [company]: Plug-In Developer, Inc.

 [licensed]: YES

 [active]: YES

 [majorrevision]: 5

 [minorrevision]: 3

 [build]: 37

 [certificate]: 102148

 [certificatetime]: 2009/08/10 15:00:05

38

 [guid]: abcd1234

 [filename]: HelloWorld.plugin

 [mainroutineorder]: BEFORE

 [bar codeinterceptmode]: YES

 [entrydatastate]: MODIFIED

 [chainonexit]: CHAINIFFAILURE

 [loadstatus]: SUCCESS

 <sample.plugin>

 [name]: FormatPlugin

 [company]: Plug-In Developer, Inc.

 [licensed]: YES

 [active]: YES

 [majorrevision]: 5

 [minorrevision]: 3

 [build]: 37

 [certificate]: 102148

 [certificatetime]: 2009/08/10 15:00:05

 [guid]: abcd1234

 [filename]: sample.plugin

 [mainroutineorder]: BEFORE

 [bar codeinterceptmode]: YES

 [entrydatastate]: MODIFIED

 [chainonexit]: CHAINIFFAILURE

 [loadstatus]: SUCCESS

Some of the fields in the configuration file may be updated to conform to scanner settings
the first time the plug-in is loaded.

Load Status of Plug-ins

The “loadstatus” field in the configuration file is updated every time after a plug-in is
loaded. It indicates success or the reason for failure if the plug-in cannot be loaded. This
field may display:

SUCCESS The plug-in is loaded successfully

INACTIVE The plug-in is inactive

UNLICENSED The plug-in is unlicensed

NORESOURCE Short of resources to load the plug-in

1. Cannot open plug-in file (file not found)

 39

2. Not enough memory

3. File operation error when loading plug-in

4. Main routine not found in the plug-in

5. Helper not found in the plug-in

CORRUPT Plug-in is corrupt

1. Unknown symbol

2. Bad relocation

3. Relocation out of range

4. Unknown relocation

CORRUPTCONFIGENTRY Configuration file is corrupt

NOPLUGINDEFINED No definition in configuration entry

PLUGINTERMINATE Error occurred during plug-in initialization

Plug-in Relevant Menu Settings

Plug-in relevant menu settings are used to help develop and debug plug-ins:

 PLGIPE

Fully visible boolean setting to enable / disable image processing class
plug-ins (1 for enable, 0 for disable).

 PLGDCE

Fully visible boolean setting to enable / disable decode class plug-ins (1 for
enable, 0 for disable).

 PLGFOE

Fully visible boolean setting to enable / disable format class plug-ins (1 for
enable, 0 for disable).

PLGDBG

Fully visible boolean setting to enable / disable plug-ins to output debug
information (1 for enable, 0 for disable).

 PLGIPN

Fully visible string setting containing the name of the image processing
class configuration file. Default is null (no configuration file).

 PLGDCN

Fully visible string setting containing the name of the decode class
configuration file. Default is null (no configuration file).

 PLGFON

Fully visible string setting containing the name of the format class
configuration file. Default is null (no configuration file).

40

To turn on FormatConf, enter the menu command: “PLGFONFormatConf”
and hard reboot the scanner. The configuration file name should be a
string consisting of ASCII characters except ‘.’, ‘?’, ‘;’ and ‘!’ (these
characters are reserved for menu commands).

 PLGINF

The plug-in configuration files may be reported to the host via the hidden
PLGINF menu command.

 PLGDEL

Delete the plug-in file or configuration file from the scanner.

 PLGDIR

List all the plug-in files and configuration files in the scanner

 PLGREA

Read the content of a configuration file. (Do not use this menu command
to output a plug-in file.)

 PLGREN

Rename a plug-in file or configuration file:

PLGRENOldFileName:NewFileName

The old name and new name are separated by a colon.

 PLGCPY

Copy a plug-in file or a configuration file:

PLGCPYOrgFileName:DstFileName

OrgFileName is the original file name and DstFileName is the destination
file name. The original name and destination name are separated by a
colon.

PLGDLA

Delete all plug-in files and configuration files in the scanner.

41

Technical Assistance

If you need assistance installing or troubleshooting your device, please contact us by
using one of the methods below:

Knowledge Base: www.hsmknowledgebase.com

Our Knowledge Base provides thousands of immediate solutions. If the Knowledge Base
cannot help, our Technical Support Portal (see below) provides an easy way to report
your problem or ask your question.

Technical Support Portal: www.hsmsupportportal.com

The Technical Support Portal not only allows you to report your problem, but it also
provides immediate solutions to your technical issues by searching our Knowledge Base.
With the Portal, you can submit and track your questions online and send and receive
attachments.

Web form: www.hsmcontactsupport.com

You can contact our technical support team directly by filling out our online support form.
Enter your contact details and the description of the question/problem.

Telephone: www.honeywellaidc.com/locations

For our latest contact information, please check our website at the link above.

http://www.hsmknowledgebase.com/
http://www.hsmsupportportal.com/
http://www.hsmcontactsupport.com/
http://www.honeywellaidc.com/locations

42

Honeywell Scanning & Mobility

9680 Old Bailes Road

Fort Mill, SC 29707

www.honeywellaidc.com

TF-PD-UG Rev B

10/12

http://www.honeywellaidc.com/

	Total Freedom 2.0
	Plug-In Developer’s Guide
	Disclaimer

	Table of Contents
	Contents and Development Environment
	Package Contents
	System Requirements
	Plug-in Development Environment
	Installing ARM ELF Toolchain for Linux PC
	Installing ARM ELF Toolchain for Cygwin

	Plug-in Development
	Header Files
	Plug-in Chain
	Build Bin Files for Every Plug-in
	Create a Plug-in Chain Configuration File
	Create MOCF File that Contains Multiple Plug-ins

	Define Plug-in Information
	Declare Plug-in
	Export Symbols for Other Plug-ins
	Define Plug-in Entry Function and Exit Function
	Makefile
	Build Plug-in
	Plug-in Configuration File
	Configurations of System Routines
	Memory and Storage for Plug-ins
	File Size of Plug-in
	Stack Size
	Global Variables
	Heap

	Create an MOCF file with Plug-ins
	Create an MOCF File that Contains a Single File
	Create an MOCF File that Contains Multiple Files
	Add Custom Defaults File to Plug-in MOCF file

	Download Plug-in and Configuration File

	Configuration File Samples
	FormatPlugin_1 and FormatPlugin_2
	Call the System Routine
	Disable Calling the System Routine
	System Routine at End of Plug-In Sequence

	Generate Menu Bar Codes for Plug-ins
	Normal
	Lock-Mode

	Format Plug-In APIs
	DataEdit
	ProcessingBarcode
	CheckLicense
	Register APIs
	Control the Scanner’s Beeper and LED
	Control GPIO of the Scanner

	Decode Plug-in APIs
	Logic of Calling Decode Plug-ins
	Decode Plug-in APIs
	Decode
	ProcessingBarcode
	CheckLicense
	CheckVersion
	Register APIs

	Control GPIO of the Scanner
	System Calls for Decode Plug-ins

	Diagnostics
	Boot Mode to Disable Loading Plug-in
	View Plug-in Configuration
	Load Status of Plug-ins
	Plug-in Relevant Menu Settings

	Technical Assistance

