
Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 1

User’s Guide

Table of Contents
1. Introduction. ... 2

1.1 Scope ... 2

1.2 References .. 3

1.3 SDK composition ... 3

1.4 Program session .. 4

2. The Basic Interface Structures .. 4

2.1 Decoder options .. 4

2.2 Image info ... 4

2.3 Symbol info ... 5

2.4 The Constants ... 6

2.5 Type definitions... 7

3. The Interface Procedures and Functions .. 8

3.1 Connect_DM_Decoder.. 8

3.2 Disconnect_DM_Decoder ... 8

3.3 Create_DM_Options ... 9

3.4 Delete_DM_Options ... 9

3.5 DecodeDM_Bits .. 9

3.5.1 GetDM_ImageInfo .. 10

3.5.2 GetDM_Info .. 10

3.6 Example of the Library usage in Windows OS (Sample_VC_D) .. 10

4. C# DMPS-Decoding Demo application - GUI ... 14

5. Authentication / Encryption Vetting ... 17

6. Appendix 1. Protection Concept Description - Digital signature .. 19

7. Appendix 2. Authentication Signatures and Encryption ... 22

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 2

1. Introduction.

Data Matrix Protection Suite is an easy-to-use Software Development Kit (SDK) that lets you

not only to encode/decode text information into/from a Data Matrix symbol, but to digitally

protect this symbol from counterfeiting or tampering with, as well. With DM Protection Suite,

protecting your products and documents has never been quicker or easier!

DMPS consists of the 2 software packages – encoding (DMPS_E) and decoding (DMPS_D).

The Encoding software has a proprietary built-in mechanism allowing either to create digital

signature (enable Authentication) to the encoded Data Matrix symbol or to encrypt it. The

Decoding software decrypts the symbol and/or checks it for authenticity while extracting the

information encoded into it.

Depending on the application, the packages can be used either together or separately. In a Supply

Chain application, for example, the encoding software can be used on the “manufacturing end”

and the decoding software – on “receiving end”.

1.1 Scope

This document is applicable to the Data Matrix Protection Suite - Decoding SDK (DMPS_D).

SDK is notated as DMPS_D_v.x.x.

Library interface is built for Windows (XP …10)/64. Windows 32-bit and Linux 32/64 versions

are also available per customer request.

The library is designed to:

• decode data encoded into Data Matrices ECC200 in accordance with ISO/IEC 16022

Symbology specification; and

• authenticate Data Matrix symbol if it was enabled for authentication utilizing DMPS_E

encoding software (User ID/Authentication key); and/or

• decrypt Data Matrix symbol if it was encrypted utilizing DMPS_E software (Product ID/

Encryption key).

DMPS_D is based on the latest 2DTG’s Data Matrix Decoding library and can be used both for

the DM protection purposes, as it’s described in this User’s Guide, and regular decoding.

DMPD_D is capable to process DM symbols enabled with up to 16 Authentication keys at the

same time.

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 3

1.2 References

• ISO/IEC 16022 - Symbology specification - Data Matrix

• U.S. Patent No.: 8,297,510 B1 “Mathematical method of 2D barcode authentication and

protection for embedded processing”

• 2DTG User’s Guide “Data Matrix Decoding SDK (Professional, DPM, Enterprise

editions)”

1.3 SDK composition

Trial/Evaluation DMPS_D SDK package – fully functional 30-days trial version downloadable

from 2DTG site:

• Windows DLL (DM_EP_64.dll) designed to perform Data Matrix decoding,

authentication and decryption.

• C# source code of the Demo program Sharp_DMPS.exe and C++ (MSVC 2017) source

code of the Demo program Demo_MSVC_DMPS.exe, illustrating the DLL usage.

• “ReadMe__How-to-use-DEMO-Samples”– description of the program evaluation

(includes: DEMO UserID (Authentication key), DEMO Product ID (Encryption key)).

• DMPS_Samples:

▪ NotProt.bmp (not protected)

▪ USig.bmp (protected with User ID - Data Matrix Authentication is enabled)

▪ PSig.bmp (protected with Product ID - Data Matrix Encryption)

▪ USigPSig.bmp (protected both with User ID and Product ID - combined Data

Matrix authentication and encryption)

Operational package includes:

• Licensed DMPS_D SDK package

• Licensed DMPS_E SDK – includes 1 (one) free Development license

• Unique Authentication key/UserID – 2DTG can provide multiple IDs per customer

request

OEM Operational package includes:

• Licensed DMPS_D SDK package

• Licensed DMPS_E SDK – includes 5 (five) free Development licenses

• Unique Authentication key/UserID – 2DTG can provide multiple IDs per customer

request

• Authentication key/UserID Generator (per customer request)

http://www.2dtg.com/sites/default/files/pat8297510.pdf
http://2dtg.com/products/data-matrix-decoding-library

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 4

1.4 Program session

Typical program session looks as follows:

Step 1. Connect decoder

Step 2. Create and set decoder options

Loop

 Step 3. Capture/read bitmap image

 Step 4. Process image

 Step 5. Request image and symbols info

 … // further application-specific data processing and interaction with user

End Loop

Step 6. Delete decoder options

Step 7. Disconnect decoder.

2. The Basic Interface Structures

The library includes the following structures:

structTDM_OptMode - the set of decoder options,

structTDM_ImageInfo - features of decoded image,

structTDM_Info - features of decoded symbols,

structTDM_Quality - Quality Parameters of decoded symbols.

2.1 Decoder options

/// decoder option modes

structTDM_OptMode

{

intmaxDMCount; //!< from 1 to 100. 1 by default

 int cellColor; //!< CL_ANY by default

 int mirrorMode; //!< MM_NORMAL by default

 int speedMode; //!< SP_ROBUST by default

 int qualityMask; //!< DM_QM_NO by default

intlabelMode; //!< LM_NORMAL by default

inttimeOut; //!<timeOut in mls. Timeout <= 0 means infinite timeout

intfilterMode; //!< FM_NON by default

int signMode; //!< DM_SM_NO by default

char productID[128];

};

2.2 Image info

/// results of decoding the whole Image

structTDM_ImageInfo

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 5

{

intDMCount; //!< number of well decoded symbols within image

intRejectionReason;//!< not DM_RR_OK if no one matrix has been well decoded

intBreakReason; //!< 0 - normal termination, 1 - termination by time-out

int AU_Validation; //!< = 1 AUTHENTICATION File is Valid

 };

ImageInfo.DMCount = 1 if any Rectangle-shaped object was detected in image.

It happens if

RejectionReason = DM_RR_OK,

RejectionReason = DM_RR_BYCRIT,

RejectionReason = DM_RR_REEDSOLOMON.

If DMCount = 1 the rectangle Corners and some of Quality Parameters are defined.

BreakReason let us know whether the time out or user break happened (for embedded platforms

only).

2.3 Symbol info

Each decoded symbol is described by the following structures:

/// Data Matrix Quality Parameters

structTDM_Quality

{

 float symbol_contrast;

 float axial_nonuniformity;

 float grid_nonuniformity;

 float fixed_pattern_damage; //!< the aggregate grade

 float unused_error_correction;

 float vertical_print_growth;

 float horizontal_print_growth;

 float symbol_contrast_grade;

 float axial_nonuniformity_grade;

 float grid_nonuniformity_grade;

 float fixed_pattern_damage_grade;

 float unused_error_correction_grade;

 float modulation_grade;

 float decode_grade; //!< 4 if DM was successfully decoded

 float overall_grade; //!< minimum of grades

};

/// result of decoding of each Data Matrix symbol in image

structTDM_Info

{

 float rowcols[8]; //!< symbol corner coordinates

 short intpchlen; //!< length of decoded byte array

 unsigned char* pch; //!< pointer to that array

 short intRSErr; //!< number of Reed Solomon errors

 short intVDim, HDim; //!< vertical and horizontal dimensions of Data

Matrix

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 6

 unsigned char saTotalSymbolsNumber //!< structured append: total number of

matrices

 ,saSymbolPosition //!< current matrix index

 ,saFileID1 //!< file identifier 1

 ,saFileID2; //!< file identifier 2

bool mirrored; //!< true if mirrored Data Matrix

booldotpeenstage; //!< true if dot peen Data Matrix

 unsigned char matrixcolor; //!< detected color of Data Matrix

 int UserSign; //!< OK, N/A, UID-Incorrect, Failure,

 int ProductSign; //!< OK, N/A, PID-Incorrect, Failure

TDM_Quality quality; //!< symbol Quality Parameters

};

2.4 The Constants

enum CELL_COLOR{

 CL_BLACKONWHITE = 1,

 CL_WHITEONBLACK = 2,

 CL_ANY = 3

};

enum MIRROR_MODE{

 MM_NORMAL = 1,

 MM_MIRROR = 2,

 MM_ANY = 3

};

enum DECODER_SPEED{

 SP_ROBUST = 0,

 SP_FAST = 1

};

enum LABEL_MODE{

 LM_STANDARD = 0, //!<-ISO 16022

 LM_DOTPEEN = 1,

 LM_FAX = 2

};

/// \enum QUALITY_MASK bits of mask:

enum QUALITY_MASK{

 DM_QM_NO = 0X0000,

 DM_QM_AXNU = 0X0001,

 DM_QM_PRGR = 0X0002,

 DM_QM_SYMCTR = 0X0004,

 DM_QM_CELLINFO = 0X0008,

 DM_QM_ALL = 0x7FFF

};

enum FILTER_MODE{

 FM_NON = 0, //!< no filter

 FM_SHARP1 = 1, //!< first sharpening filter

 FM_SHARP2 = 2, //!< second sharpening filter

 FM_SHARPMASK = 3 //!< Mask filter

};

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 7

enum SIGNATURE_MODE{

 DM_SM_NO = 0,

 DM_SM_USER = 1, //!< 0x01 User Signature

 DM_SM_PRODUCT = 2, //!< 0x02 Product Signature

 DM_SM_ALL = 3 //!< 0x03

};

//Image Errors

enum UID_FILE_VALIDATION{

//----------------------

 AU_OK = 0,

 AU_NA = 1, // Not Applicable

 AU_ERR_UID_NF = 3, // File "User_*.txt" not found

 AU_ERR_HEX = 4, // Unresolved hex digit in UserID

 AU_ERR_UID = 5, // Wrong User ID structure/length

};

// Symbol Errors

enum DM_SYMBOL_VALIDATION{

 DM_AU_OK = 0,

 DM_AU_NA = 1, // Not Applicable

 DM_AU_FAILURE = 2, // Signature failure

 DM_AU_ERR_PID = 7 // Wrong Product ID structure/length

};

enum DM_REJECTION_REASON{

 DM_RR_OK = 0,

 DM_RR_NON = 1,

 DM_RR_NODATAMATRIX = 2,

 DM_RR_BYCRIT = 3,

 DM_RR_REEDSOLOMON = 5,

 DM_RR_NOMEMORY = 99,

 DM_RR_UNKNOWN = 100,

 DM_RR_DISCONNECTED = 200

};

enum DM_BREAK_REASON{

//----------------------

 DM_ALL_INSPECTED = 0 //!< no breaks occurred

,DM_TIMEOUT = 1 //!< termination by time out

};

2.5 Type definitions

typedef void* PDM_Decoder; //!< handler of Data Matrix Decoder

typedef void* PDM_Options; //!< handler of Decoder Options

typedefTDM_ImageInfo* PDM_ImageInfo; //!< pointer to Image Info

typedefTDM_Quality* PDM_Quality; //!< pointer to symbol Quality

typedefTDM_Info* PDM_Info; //!< pointer to symbol Info

typedef unsigned char* TRow; //!< pointer to bitmap line

/// The function creates Data Matrix Decoder and returns Decoder handler

typedefPDM_Decoder (stdcall *TConnect_DM_Decoder)(intmaxrow, intmaxcol);

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 8

/// The function destroys Data Matrix Decoder

typedef void (stdcall *TDisconnect_DM_Decoder)(PDM_Decoder&pDecoder);

/// The function creates Decoder Options and returns Options handler

typedefPDM_Options (stdcall *TCreate_DM_Options)(PDM_DecoderpDecoder,

TDM_OptModeoptmode);

/// The function destroys Decoder Options

typedef void (stdcall *TDelete_DM_Options)(PDM_Options&pOptions);

/// The function decodes array ppbits with given Options

typedefint (stdcall *TdecodeDM_Bits)(PDM_OptionspOptions, introwcount,

intcolcount, TRow* ppbits);

/// The function returnes the ImageInfo of last decoded Image

typedefPDM_ImageInfo (stdcall *TGetDM_ImageInfo)(PDM_OptionspOptions);

/// The function returnes the DM_Info(dmNum)

typedefPDM_Info (stdcall *TGetDM_Info)(PDM_OptionspOptions, intdmNum);

3. The Interface Procedures and Functions

Description of the interface procedures is below.

3.1 Connect_DM_Decoder

PDM_DecoderConnect_DM_Decoder (intmaxrowcount, intmaxcolcount);

Description.

Function generates new instance of class encapsulating the decoder functionality.

Parameters.

Maximum of horizontal and vertical image sizes.

Return value.

Pointer to decoder in success, or NULL otherwise.

3.2 Disconnect_DM_Decoder

void Disconnect_DM_Decoder (PDM_Decoder&pDecoder);

Description.

Procedure destroys decoder class and frees memory.

Parameter.

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 9

Pointer to decoder. Decoder should be connected.

3.3 Create_DM_Options

Class TDM_Options encapsulates the decoder options and methods of image processing and

inspection.

PDM_OptionsCreate_DM_Options (PDM_DecoderpDecoder,TDM_OptModeoptmode);

Description.

Function generates new class to decode image with certain options.

Parameters.

- Pointer to decoder.

- Pointer to option modes that specify the way of image processing

Return value.

The handler that provides decoding of the image with desirable options.

3.4 Delete_DM_Options

void Delete_DM_Options (PDM_Options&pOptions);

Description.

The function destroys a handler.

Parameters.

- Handler of decoder with options.

3.5 DecodeDM_Bits

intDecodeDM_Bits (PDM_Options pOptions,

 int actualrowcount,

 int actualcolcount,

 TRow* prows);

Description.

The function processes an image and fills Image Info and array of Symbol Infos.

Parameters.

- Handler produced by 3.3

- Number of image rows

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 10

- Number of image columns

- Array of pointers to image rows. Every row is a byte array with 8-bit pixel intensities.

(We have typedef unsigned char* TRow;)

Return value.

0 if no one symbol was decoded, >0 otherwise.

If the only symbol was decoded then Rejection Reason may be not DM_RR_OK.

3.5.1 GetDM_ImageInfo

PDM_ImageInfoGetDM_ImageInfo (PDM_OptionspOptions);

Description.

The function returns image info.

Return value.

Pointer to Image Info.

3.5.2 GetDM_Info

PDM_InfoGetDM_Info (PDM_OptionspOptions, intdmNum);

Description.

The function returns Data Matrix symbol info.

Parameters.

- Handler of decoder with options

- Number (index) of decoded symbol in image.

If no symbols were decoded we return Info about the most probable symbol location.

Return value.

Pointer to Symbol Info.

3.6 Example of the Library usage in Windows OS (Sample_VC_D)

//---

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <string.h>

#include <time.h>

#include <Windows.h>

#include "DMPro_Types.h"

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 11

#include "LoadBmp.cpp"

const int // the images size

 maxrowQ = 4000,

 maxcolQ = 4000;

int main(int argc, char **argv)

{

 TRow* pbits;

 TRow pmembits; // Image in Memory

 int ResLoadBMP;

 int rowcount, colcount, row, result;

 int i, k;

 int rr;

 PDM_Decoder pDecoder;

 PDM_Options dec1;

 TDM_OptMode opt;

 TDM_ImageInfo* pdm_imageinfo;

 TDM_Info* pdm_info;

 clock_t beg, end;

 int dmq;

 int welldec;

 char endrun;

 char UID_Val[9];

 char Res_USig[9];

 char Res_PSig[9];

 HINSTANCE dllinstance;

 TConnect_DM_Decoder Connect_DM_Decoder;

 TDisconnect_DM_Decoder Disconnect_DM_Decoder;

 TCreate_DM_Options Create_DM_Options;

 TDelete_DM_Options Delete_DM_Options;

 TDecodeDM_Bits DecodeDM_Bits;

 TGetDM_ImageInfo GetDM_ImageInfo;

 TGetDM_Info GetDM_Info;

 dllinstance = LoadLibrary(L"..\\DM_DecWinPro.dll");

 if (dllinstance==NULL)

 goto doExit;

 Connect_DM_Decoder = (TConnect_DM_Decoder

)GetProcAddress(dllinstance,"Connect_DM_Decoder");

 Disconnect_DM_Decoder = (TDisconnect_DM_Decoder

)GetProcAddress(dllinstance,"Disconnect_DM_Decoder");

 Create_DM_Options = (TCreate_DM_Options

)GetProcAddress(dllinstance,"Create_DM_Options");

 Delete_DM_Options = (TDelete_DM_Options

)GetProcAddress(dllinstance,"Delete_DM_Options");

 DecodeDM_Bits = (TDecodeBitsF

)GetProcAddress(dllinstance,"DecodeDM_Bits");

 GetDM_ImageInfo = (TGetDM_ImageInfo

)GetProcAddress(dllinstance,"GetDM_ImageInfo");

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 12

 GetDM_Info = (TGetDM_Info

)GetProcAddress(dllinstance,"GetDM_Info");

 pmembits = (TRow) malloc(maxrowQ*maxcolQ); // Image in Memory

 pbits = (TRow*) malloc(maxrowQ*sizeof(TRow)); // pointers to ScanLines

 for (row = 0; row < maxrowQ; row++){

 pbits[row] = &pmembits[maxcolQ*row];

 }

 welldec = 0;

 if (Connect_DM_Decoder==NULL)

 goto doExit;

 pDecoder = Connect_DM_Decoder(maxcolQ,maxrowQ);

 if (pDecoder != NULL){

 opt.maxDMCount = 100;

 opt.cellColor = CL_ANY;

 opt.mirrorMode = MM_ANY;

 opt.speedMode = SP_ROBUST;

 opt.qualityMask = DM_QM_ALL;

 opt.labelMode = LM_STANDARD;

 opt.timeOut = 0;

 opt.filterMode = 0;

 opt.signMode = DM_SM_ALL;

 strcpy(opt.productID,"123");

 dec1 = Create_DM_Options(pDecoder,opt);

 rowcount = maxrowQ;

 colcount = maxcolQ;

 ResLoadBMP = LoadBMP ("U_123.bmp" ,pbits ,rowcount ,colcount);

 if (ResLoadBMP == 0){

 beg = clock();

 result = DecodeDM_Bits(dec1,rowcount, colcount, pbits);

 end = clock();

 pdm_imageinfo = GetDM_ImageInfo(dec1);

 dmq = pdm_imageinfo->DMCount;

 printf("\n DM count = %4d",dmq);

 rr = pdm_imageinfo->RejectionReason;

 if (pdm_imageinfo->AU_Validation==AU_OK) strcpy(UID_Val," OK ");

 else if (pdm_imageinfo->AU_Validation==AU_NA) strcpy(UID_Val," N/A

");

 else strcpy(UID_Val," INVALID");

 printf("\n\n User.id: %s",UID_Val);

 if (dmq>0){

 for (i=0;i<=dmq-1;i++){

 pdm_info = GetDM_Info(dec1,i);

// signatures:

 memset(Res_USig,0,9);

 memset(Res_PSig,0,9);

 if (pdm_info->UserSign==DM_AU_OK) strcpy(Res_USig," OK ");

 else if (pdm_info->UserSign==DM_AU_NA) strcpy(Res_USig," N/A

");

 else strcpy(Res_USig," FAILURE");

 if (pdm_info->ProductSign==DM_AU_OK) strcpy(Res_PSig," OK ");

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 13

 else if (pdm_info->ProductSign==DM_AU_NA) strcpy(Res_PSig," N/A

");

 else strcpy(Res_PSig," FAILURE");

 printf("\n --- USER SIGN = %s --- PRODUCT SIGN = %s\n",

Res_USig, Res_PSig);

// other infos:

 if (pdm_info->pchlen>0)

 printf("\n Decoded array: %s\n",pdm_info->pch);

 printf("\n Corners: ");

 for (k=0;k<4;k++){

 printf("(%4d,%4d), ", int(pdm_info->rowcols[2*k])

 , int(pdm_info->rowcols[2*k+1]));

 }

 if (rr == 0)

 welldec++;

 printf("\n Dimensions: %4d * %4d",

 pdm_info->VDim, pdm_info->HDim);

 printf("\n vert. & horiz. print_growth = %7.2f,%7.2f"

 ,pdm_info->quality.vertical_print_growth

 ,pdm_info->quality.horizontal_print_growth);

// Quality Parameters:

 printf("\n axial_nonuniformity (grade) = %7.2f (%d)"

 ,pdm_info->quality.axial_nonuniformity

 ,int(pdm_info->quality.axial_nonuniformity_grade));

 printf("\n grid_nonuniformity (grade) = %7.2f (%d)"

 ,pdm_info->quality.grid_nonuniformity

 ,int(pdm_info->quality.grid_nonuniformity_grade));

 printf("\n symbol_contrast (grade) = %7.2f (%d)"

 ,pdm_info->quality.symbol_contrast

 ,int(pdm_info->quality.symbol_contrast_grade));

 printf("\n unused_error_corr. (grade) = %7.2f (%d)"

 , pdm_info->quality.unused_error_correction

 , int(pdm_info->quality.unused_error_correction_grade));

 printf("\n fixed_patt_damage. (grade) = %7.2f (%d)"

 , pdm_info->quality.fixed_pattern_damage

 , int(pdm_info->quality.fixed_pattern_damage_grade));

 printf("\n (modulation grade) = (%d)"

 ,int(pdm_info->quality.modulation_grade));

 printf("\n (decode grade) = (%d)"

 ,int(pdm_info->quality.decode_grade));

 printf("\n (overall grade) = (%d)"

 ,int(pdm_info->quality.overall_grade));

 }

 }

 printf("\n time = %f\n", (end - beg) / CLK_TCK);

 }else{

 printf("\n\nLoadBMP !=0\n");

 }

 Delete_DM_Options(dec1);

 Disconnect_DM_Decoder(pDecoder);

 }

 printf("\n\n Well decoded images: %d \n",welldec);

 free(pbits);

 free(pmembits);

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 14

doExit:

 printf(">");

 scanf("%c",&endrun);

 return 0;

}

4. C# DMPS-Decoding Demo application - GUI

Application is designed to demonstrate full encoding and authentication/encryption functionality

of the DMPS_D SDK and how to incorporate decoding DLL into the customer application.

Double-click Sharp_DMPS.exe (in Windows 10 you may need to run it as administrator first

time you run the program) – “Decode DMPS” window will appear:

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 15

GUI looks pretty much the same way as for DM Enterprise Decoder (2DTG User’s Guide “Data

Matrix Decoding SDK (Professional, DPM, Enterprise editions) with two additional Sections

(shown in Red above) .

 Decode Settings Options:

• Max DM count – number of Data Matrix symbols within an image (if known in

advance) – default number = 100, total – 400;

• Mirror – Normal, Mirror, Normal&Mirror (default, if not known in advance)

• Decode/Speed – Ultimate+ (Default), Ultimate, Regular, Express

• Label Mode – Standard, Dot Peen (DPM), St+Dot (default)

• Symbol Quality – YES (default)/NO

• Color – Black, White, Any (default, if not known in advance)

• Filter – default – “None” (see Section 5.4 for detail)

• Quiet Zone – Normal (per ISO 16022), Small (default – “Normal”)

Overall decode info:

• Decoded DM – number of Data Matrix decoded in this image

• Rejection Reason – returns decode result:

o “OK” successful decoding (DM_RR_OK = 0) or

Error Code - in some cases decoding library can return certain error codes associated with

the decoding process. They are as follows:

o Error Code 1 – (DM_RR_NON = 1) – no “structured formations” found within

the image

DMPS Addition:

• Signature - choose the option corresponding to the open symbol from the drop-down

menu:

▪ None

▪ UserSign – Authentication only

▪ ProdSign – Encryption only

▪ Both – Authentication + Encryption

• Product ID - enter your Encryption Key (s#123456789 – evaluation example).

• UserID – enter UserID received from 2DTG. Up to 16 UserIDs are allowed (default

data string is an evaluation example)

http://2dtg.com/products/data-matrix-decoding-library
http://2dtg.com/products/data-matrix-decoding-library

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 16

o Error Code 2 – (DM_RR_NODATAMATRIX= 2) - no “matrix-like formations”

found within the image

o Error Code 3 – (DM_RR_BYCRIT = 3) - alternating pattern is incorrect (dark

and light modules in the finder pattern do not meet alternation criteria)

o Error Code 5 – (DM_RR_REEDSOLOMON = 5) – excessive number of Reed-

Solomon error

• Time (ms) – total decode time

Symbol Info:

• Symbol Number – symbol for which the decode result is displayed (starts with number

“0”) assuming multiple number of symbols in the image

• Symbology ID – GS1/Regular Data Matrix identifier for displayed symbol

• V Dm, H Dm – Data Matrix dimensions (Vertical, Horizontal) – in number of modules

• Actual Color – shows if the color of displayed symbol is regular or inversed

• Mirrored – shows if displayed symbol is mirrored or not

• DotPeen – shows if displayed symbol was decode using Dot Peen algorithm or Standard

one

• R-S Errors – number of Reed-Solomon errors in displayed decoded symbol

Symbol Quality – results of the symbol quality assessment in accordance with ISO/IEC 15415

Print Growth - calculated per ISO/IEC 16022

Note:

DMPS library has a built-in mechanism for UserID Validation. If you see an error message like

the one below, when trying to authenticate Data Matrix:

UserID should be checked for integrity and authentication process be repeated.

DMPS Addition:

• Authentication

• Decryption

(Both fields can return 3 optional values: OK, Failed, N/A (see Section 5 for more info)).

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 17

5. Authentication / Encryption Vetting

DMPS_D may return the following results when checking for Data Matrix Authenticity

/Encryption (all symbols are from trial SDK package and all of them get correct decoding, even

if Authentication failed):

Protection Level Data Matrix Type
Data Matrix

Sample

Signature

Authentication

Failure

Code

Level “1” Protection

Authentication only

Signature setting:

UserSign

Regular Data Matrix

User: Failure

1

Authentication

enabled Data Matrix

User: OK

Level “2” Protection

Encryption only

Signature setting:

ProdSign

Encrypted Data

Matrix

Product: OK

Level “3” Protection

Authentication +

Encryption

Signature setting: Both

Encrypted Data

Matrix

User: Failure

Product: OK

2

Authentication

enabled + encrypted

Data Matrix

User: OK

Product: OK

Failure Code 1 indicates that vetted symbol was counterfeited. Most probably, original Data

Matrix was captured, decoded and the obtained data were used for generating

counterfeited symbols for placing them on counterfeited goods, documents, etc.

Failure Code 2 indicates that both Encryption Key and Authentication Key are compromised

and need to be changed immediately.

Additional comments on vetting results:

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 18

1. The Product Signature (Encryption) is always being analyzed first (if this option is

“ON”) and if it returns “Failure” – the process stops, matrix is not decoded and no

further analyzes of the User Signature is performed. This is a result of the predetermined

sequence of creating digital signatures in the Protection mechanism - User Signature

must always antedate the creation of Product Signature.

2. If User Signature (Authentication vetting) returned “Failure”, the matrix can still be

decoded, indicating at the same time that it was counterfeited on the way to the Receiver.

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 19

6. Appendix 1. Protection Concept Description - Digital signature

One of the widely used concepts of data authentication is the concept of digital signature. A

digital signature scheme allows one to sign an electronic message and later the produced

signature can be validated by the owner of the message or by any verifier. This concept employs

asymmetric cryptography and is covered by a few international and domestic standards.

Because asymmetric key algorithms are nearly always very computationally intensive direct use

of this concept for barcode applications is not practical or even feasible. In most “field”

applications, the barcode decoding algorithm is embedded into the digital signal processing

(“DSP”) platform (for example, a scanner), having limited computational resources. Running

cryptographical software on such devices would make decoding processes slow if not

impossible.

DMPS employs proprietary patented symmetric key authentication mechanism that is built into

an existing encoding/decoding algorithm as an optional “security feature” and is suitable for DSP

platforms.

This algorithm represents modified digital signature concept and term “signature” here is used

just to underline the fact that each Data Matrix, generated using this mechanism, will have the

unique digital characteristics distinguishing it from any other Data Matrix symbol with the same

encoded content.

 DMPS provides for the two types of “digital signatures” – User Signature (Authentication)

and Product Signature (Encryption).

User Signature (referenced also as an Authentication Key) is used for symbol authentication. It

is calculated using the encoded data sequence, matrix dimensions and shared key

(referenced as “User ID”), subject to a key-exchange protocol between originator

and receiver. User ID is provided as a part of 2DTG’s DMPS_E package. Since

the Authentication key depends on the encoded data sequence it is different for

every matrix going through the algorithm.

The resulting symbol image CAN be decoded by any commercially available

decoding software. Counterfeiter most probably will not even recognize that this

symbol is carrying “digital signature” with it, because it looks identical to

unprotected image with the same content. However, 2DTG decoding software

DMPS_D allows to authenticate the image by verifying its digital signature.

Product Signature (referenced also as an Encryption Key) is used for Data Matrix encryption.

It depends on three parameters: Product ID (Product Serial number, Part No. or

any arbitrary number - up to 100 alpha-numeric characters), User ID and matrix

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 20

dimensions. Product ID represents an additional secret exchange key established

within the alternate (additional) key-exchange protocol. Though this protocol can

be utilized alone for Data Matrix encryption, it is designed mainly for

strengthening the authentication mechanism within the main key-exchange

protocol for some particularly sensitive applications. In other words, it provides

one more layer of protection on top of authentication.

On the contrary to the User Signature option, the resulting symbol image

CANNOT be decoded by any commercially available decoding software except

of DMPS_D.

Combined use of these two mechanisms provides the best Data Matrix protection. Diagram

below illustrates the mechanism of “combined protection” explaining the sequence of events

when both protection mechanisms are employed – digital signature and encryption.

This diagram illustrates also that protected matrix looks very similar to an original one. Without

special efforts, for example, it may be difficult for anyone even to recognize that the matrix is

“signed” or encrypted. Matrixes, circulating in a supply chain, for instance, are never the ideal

matrixes – they always have defects, irregularities, or damages, which are randomized “by

nature”. It is impossible to say without extensive investigation if some of these irregularities may

have different origin. From this perspective the implemented digital signature algorithm

possesses steganography features, providing additional “safety” to the whole method.

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 21

If the process fails on either of the two protocols – matrix cannot be decoded (alternate protocol)

or matrix did not pass authentication (main protocol) – it means that the system is under

counterfeiting attack (note, that matrix authentication may fail even if it was successfully

decoded).

Even if the Alternate protocol was compromised, it is still not enough to decrypt the matrix,

because the Encryption key involves the “User ID” as one of the components for its calculation.

So, the attacker must compromise the Main protocol, as well, to succeed.

In addition, even if both protocols are compromised, the attacker may not enjoy the benefit of it

for a long time. Unlike the User ID, the Product ID is designed to be changeable on a regular

basis, so if the problem with the protocol integrity arises it will be discovered promptly.

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 22

7. Appendix 2. Authentication Signatures and Encryption

There are, normally, two ways how symbol can be counterfeited:

Repeated encoding – original Data Matrix is captured, decoded and the obtained data are used

for generating counterfeited symbols for placing them on counterfeited goods,

documents, etc. At this stage the original data can also be tempered. This is the

most “cost efficient” and “reliable” method for counterfeiters and that is why it is

mostly widely used.

Direct coping the symbol from original (product, document, etc.) and placing it to counterfeited

item – less reliable and technologically sometimes more complicated, particularly

for DPM applications.

DMPS offers two protection mechanisms effectively addressing both of these counterfeiting

techniques.

1. User Signature. This method provides a Master Company (Customer) with the ability to

sign a Data Matrix symbol with its own unique digital signature so that later the produced

signature can be validated by the owner of the message or by any verifier. This makes

Repeated encoding useless for an intruder, though it still not protects the symbol from

direct copying.

Protecting from direct copying can be effectively implemented (particularly when

protecting documents) by printing Data Matrix in UV (Ultra-Violet) inks and “reading”

them with specially retrofitted UV scanners, offered by 2DTG.

The user.ID file contains the string of up to 100 alphanumeric characters as follows:

Main features:

• Allows for Data Matrix Symbol Authentication utilizing DMPS_D software.

• “Signature Algorithm” contains customer specific information – User ID –

supplied by 2DTG in the form of text file with special syntax. User ID is used for

calculating Authentication key.

• Authentication key depends on the encoded data sequence - so it is different for

every matrix going through the algorithm.

*User Name*689B18B4DEFF181276F245*033FA9F560B6830036CADC

Up to 53 characters Unique Identifier

http://2dtg.com/products/uv-ir-scanners

Data Matrix Protection Suite - Decoding SDK

2D Technology Group, Inc. Rev. 21.10 23

• Symbol can be decoded by any 3rd party decoding software but that software will

NOT BE ABLE to detect User Signature.

Employing this technic calls for establishing a certain key-exchange protocol (referenced

here as a Main Key-Exchange Protocol) between originator (Master company) and

receiver (member of protected network), as it is always a case with the symmetric-key

algorithms. This single secret key (User ID) must be shared and kept private by both

originator and receiver.

2. Product Signature. This method provides a Master Company with the ability to encrypt

Data Matrix symbol using Product ID as variable parameter. Since this parameter can be

changed on a regular basis, both counterfeiting and copying of symbols becomes very

difficult or even meaningless for an intruder.

Main features:

• Allows for Data Matrix Symbol encryption/decryption utilizing DMPS software.

• Encryption key depends both on Product ID and User ID even if this

mechanism is used alone, without User signature.

• Symbol CANNOT be decoded by any 3rd party decoding software - only by

2DTG decoding software – DMPS_D.

This technic provides for establishing an Alternate Key-Exchange Protocol between

Originator (Master Company) and Receiver (member of protected network). The shared

secret key in this case is Product ID. Establishing this alternate communication protocol

does not mean that the main protocol is not required anymore, because User ID (which is

communicated within the main protocol) is still required for calculating Encryption key.

3. Combined Signature. The symbol provides the highest level of protection. In this case

“User Signature” shall be created first and “Product Signature” shall be applied “on

top of that”. Accordingly, symbol processing at the receiving end shall be done in the

reversed order as it is depicted in the block-diagram above.

The resulting symbol images - though they are almost indistinguishable for human eyes, even

when compared next to each other, - feature different protection levels:

Protection Levels

User Signature Product Signature Both Signatures

 Authentication mode Encryption mode Combined mode

 Level «1» Level «2» Level «3»

